首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512111篇
  免费   46807篇
  国内免费   23143篇
电工技术   32625篇
技术理论   80篇
综合类   60881篇
化学工业   64590篇
金属工艺   21585篇
机械仪表   28152篇
建筑科学   70124篇
矿业工程   27772篇
能源动力   16204篇
轻工业   35285篇
水利工程   24646篇
石油天然气   23275篇
武器工业   5579篇
无线电   35140篇
一般工业技术   38350篇
冶金工业   28288篇
原子能技术   4616篇
自动化技术   64869篇
  2024年   822篇
  2023年   5675篇
  2022年   10900篇
  2021年   15262篇
  2020年   13760篇
  2019年   11012篇
  2018年   10804篇
  2017年   13616篇
  2016年   17198篇
  2015年   19333篇
  2014年   33543篇
  2013年   29468篇
  2012年   35278篇
  2011年   37453篇
  2010年   28926篇
  2009年   29870篇
  2008年   27746篇
  2007年   35932篇
  2006年   33824篇
  2005年   29464篇
  2004年   24278篇
  2003年   21636篇
  2002年   17420篇
  2001年   14294篇
  2000年   11822篇
  1999年   9402篇
  1998年   6811篇
  1997年   5943篇
  1996年   5365篇
  1995年   4575篇
  1994年   4026篇
  1993年   2975篇
  1992年   2547篇
  1991年   1865篇
  1990年   1664篇
  1989年   1476篇
  1988年   1084篇
  1987年   755篇
  1986年   590篇
  1985年   551篇
  1984年   507篇
  1983年   369篇
  1982年   299篇
  1981年   263篇
  1980年   245篇
  1979年   156篇
  1978年   93篇
  1977年   103篇
  1962年   96篇
  1959年   81篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
To enhance chemical stability and suppress of aggregation of magnetite nanoparticles (MNPs), which are used as a support for thermoresponsive copolymer immobilization, silica coating of the MNPs is applied via the electrooxidation method. Although the resulting silica coated-MNPs also formed aggregates, the size distribution of the aggregate shifted to smaller size range. Because of that, the surface area available for copolymer immobilization increased approximately 6.7 times at maximum as compared with that of the uncoated MNPs. It contributed to the increase of the amount of the immobilized copolymer on the silica-coated MNPs, which is approximately four times larger than that on the uncoated MNPs. Fe3O4 dissolution test confirmed enhancement of chemical stability of MNPs. The thermoresponsive copolymer immobilized on the silica-coated MNPs shows the ability to recycle Cu(II) ion from Cu(II) containing solution by changing temperature with significantly shorter time than those in other thermoresponsive adsorbents in gel form.  相似文献   
62.
Aqueous solutions of poly(vinylpyrrolidone) (PVP) of various concentrations (20, 25, and 28 wt%) were successfully spun into fibers by centrifugal spinning. The pristine PVP fibers were annealed and carbonized to produce flexible carbon fibers for use as binder-free anodes in lithium-ion batteries. These flexible carbon fibers were prepared by developing a novel three-step heat treatment to reduce the residual stresses in the pristine PVP precursor fibers, and to prevent fiber degradation during carbonization. The thermogravimetric analysis data showed that the annealed fibers yielded a residual mass percentage of 36.0% while the pristine PVP fibers suffered a higher mass loss and only retained 26.5% of original mass above 450 °C (under nitrogen). The electrochemical performance of the carbon-fiber anodes was evaluated by conducting galvanostatic charge/discharge, rate performance, and cycle voltammetry experiments. The 20, 25, and 28 wt% derived binder-free anodes delivered specific charge capacities of 205, 189, and 275 mAh g−1, respectively, after the first cycle at a current density of 100 mA g−1. The results obtained in this work indicate that a feasible pathway towards a large-scale production of carbon-fiber anodes from a 100% aqueous solution can be achieved via centrifugal spinning and subsequent heat treatment.  相似文献   
63.
As the formaldehyde is one of the main indoor pollutants, the purpose of this study is to effectively remove indoor formaldehyde pollution by using environmentally friendly 3D printing ornaments. The wood 3D printing filaments cellulose/polylactic acid composite (Cellu/P) was selected as the starting material, and 3-aminopropyltriethoxysilane (APTES) was used for chemical modification to obtain a series of cellulose composite materials with amino groups. The modified composite materials (APTES@Cellu/P) were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy, thermogravimetric analysis, and mechanical tests, and a formaldehyde removal experiment was performed. The feasibility of 3D printing was evaluated, and the process of 3D printing-functionalized customized ornaments was proposed, and then a school emblem was used for modeling, printing, and surface modification. Compared with the commercially traditional activated carbon, 3D printing-customized ornaments of APTES@Cellu/P material has a better formaldehyde removal effect, and can even avoid the secondary pollution that is common to the activated carbon.  相似文献   
64.
The over-exploitation of finite fossil resources and/or the increased environmental and sustainable awareness inspire scientists and technologists to search for inexpensive alternatives from renewable chemicals. Phenol formaldehyde (PF) resins, the oldest type of synthetic polymers with good mechanical properties and heat resistance, are widely used in the production of coatings, laminates, molding compositions, and glues. Here, biobased urushiol-derived PF resins were synthesized from the alkali-catalyzed reaction between urushiol and formaldehyde. The chemical compositions and molecular structures of resole resins were characterized by carbon-13 nuclear magnetic resonance and Fourier transform infrared spectroscopy, and their curing behaviors were studied by differential scanning calorimetry. The as-prepared urushiol-derived resole resins had methylol (Ph−CH2OH), ortho- and para-hemiformal groups (Ph−CH2OCH2OH), and the para−para/ortho−para/ortho−ortho links of methylene groups (Ph−CH2−Ph), whereas the resole resins had low curing temperatures at about 100–113°C. Additionally, given the long side alkyl group moiety on the aromatic rings of urushiol, the films of cured urushiol-derived resole resins had low glass transition temperatures of 132 ± 2°C. Furthermore, the as-prepared urushiol-derived coatings exhibited excellent physical and mechanical properties.  相似文献   
65.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
66.
Within the reactive oxygen species (ROS) generated by cellular metabolisms, hydroxyl radicals (HO) play an important role, being the most aggressive towards biomolecules. The reactions of HO with methionine residues (Met) in peptides and proteins have been intensively studied, but some fundamental aspects remain unsolved. In the present study we examined the biomimetic model made of Ac-Met-OMe, as the simplest model peptide backbone, and of HO generated by ionizing radiation in aqueous solutions under anoxic conditions. We performed the identification and quantification of transient species by pulse radiolysis and of final products by LC-MS and high-resolution MS/MS after γ-radiolysis. By parallel photochemical experiments, using 3-carboxybenzophenone (CB) triplet with the model peptide, we compared the outcomes in terms of short-lived intermediates and stable product identification. The result is a detailed mechanistic scheme of Met oxidation by HO, and by CB triplets allowed for assigning transient species to the pathways of products formation.  相似文献   
67.
Molecular mechanisms and process kinetics of crystallizing concomitant polymorphs remain poorly understood. Solvent-mediated phase transformation and concomitant crystallization are difficult to be distinguished in practice, as multiple forms can be detected at the same time. Herein, we developed a population balance model to simulate a concomitant crystallization process of two polymorphs of tolfenamic acid. Our kinetic modeling aims to understand concomitant crystallization and help guide form selection of such a molecular system. Crystallization kinetics of ethanolic solutions were uncovered from induction time measurements, as well as seeded and unseeded crystallization experiments. Experimental and simulation results demonstrate that the stable form I crystallizes concomitantly with the metastable form II. The faster growing form II results in an intermediate decline in the composition of form I in crystallized samples, a characteristic feature of the concomitantly crystallized system. A four-quadrant scheme of attainable polymorph outcome was simulated under various crystallization conditions.  相似文献   
68.
The SAFT-γ Mie group-contribution equation of state is used to represent the fluid-phase behavior of aqueous solutions of a variety of linear, branched, and cyclic amines. New group interactions are developed in order to model the mixtures of interest, including the like and unlike interactions between alkyl primary, secondary, and tertiary amine groups (NH2, NH, N), cyclic secondary and tertiary amine groups (cNH, cN), and cyclic methine-amine groups (cCHNH, cCHN) with water (H2O). The group-interaction parameters are estimated from appropriate experimental thermodynamic data for pure amines and selected mixtures. By taking advantage of the group-contribution nature of the method, one can describe the fluid-phase behavior of mixtures of molecules comprising those groups over broad ranges of temperature, pressure, and composition. A number of aqueous solutions of amines are studied including linear, branched aliphatic, and cyclic amines. Liquid–liquid equilibria (LLE) bounded by lower critical solution temperatures (LCSTs) have been reported experimentally and are reproduced here with the SAFT-γ Mie approach. The main feature of the approach is the ability not only to represent accurately the experimental data employed in the parameter estimation, but also to predict the vapor–liquid, liquid–liquid, and vapor–liquid–liquid equilibria, and LCSTs with the same set of parameters. Pure compound and binary phase diagrams of diverse types of amines and their aqueous solutions are assessed in order to demonstrate the main features of the thermodynamic and fluid-phase behavior.  相似文献   
69.
The microstructural development during crystallization firing of a commercially-available dental-grade nanostructured lithia-zirconia glass-ceramic (Vita Suprinity® PC) was unraveled using a wide battery of ex-situ and in-situ characterization techniques. It was found that the milling blocks are slightly crystallized glass-ceramics, with a complex chemical composition and consisting of partially de-polymerized glass plus lithium silicate (Li2SiO3) nanocrystals. It was also found that during crystallization firing the glassy matrix first reacts with part of the Li2SiO3 to form lithium disilicate (Li2Si2O5) at ~810?820 °C, and then lithium orthophosphate (Li3PO4) precipitates from the glass. This results in glass-ceramics with abundant nanocrystals embedded in a sparse zirconosilicate glass matrix (containing many other cations subsumed) that, due to its high viscosity, inhibited crystal growth. Therefore, these dental glass-ceramics are not reinforced with zirconia (ZrO2) crystals unless over-fired above ~890 °C and at the expense of its singular nanostructure. Finally, this study opens doors for optimizing the clinical performance of these dental glass-ceramics via microstructural tailoring.  相似文献   
70.
周佳慧 《中国油脂》2021,46(9):92-98
花生粕是重要的蛋白饲料原料,但由于其氨基酸不平衡,特别是精氨酸与赖氨酸比例严重失衡(精氨酸与赖氨酸含量比值在3~4,理想的精氨酸与赖氨酸含量比值为1.0),限制了其在动物养殖中的应用。研究了复合酶预处理结合乳酸菌发酵花生粕对其品质的改善。结果表明:经菌酶协同处理后,花生粕粗蛋白质含量由46.4%提高至506%,大分子蛋白明显降解为小分子蛋白,酸溶蛋白质含量由2.3%提高至17.8%,多肽含量由1.6%提高至15.7%,蛋氨酸和赖氨酸含量分别提高了77.1%和42.0%,精氨酸降解率为18.7%,精氨酸与赖氨酸含量比值从3.7降低至2.1,总酸含量由06%提高到4.7%,其中乳酸含量由0.64 mg/g提高至14.63 mg/g。菌酶协同处理后的花生粕抗氧化性明显增强,其中每克菌酶协同处理后的花生粕对羟自由基的清除能力与171.6 mg VC相当,比花生粕(与47.6 mg VC相当)提高了2.6倍。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号